内容简介
本文将光伏板和热泵耦合在一起,建立了PVT热泵系统,将光伏板作为热泵的蒸发器,利用制冷剂R134a对光伏板进行冷却,在降低光伏板温度以提高其发电效率的同时,将光伏板的多余热量加以利用。本文首先分别建立了平板式和真空管式光伏板热泵混合系统的数学模型,利用数学模型分析了太阳辐射强度对系统性能的影响,并比较分析了两种系统在不同城市的性能;然后对两种装置进行了实验测试,分析了两种装置的瞬时性能,测试了太阳辐射强度、冷凝器循环水流量和冷凝器入口水温对系统性能的影响;最后分析了PVT热泵系统的运行策略和经济性。
作者介绍
陈红兵:工学博士,副教授,“供热供燃气通风及空调工程”专业硕士研究生导师。2001.1至2002.1在香港理工大学学习访问一年,2009.11至2011.10在英国诺丁汉大学从事博士后访问研究。主持和参与科研课题30多项,发表论文70余篇,其中SCI、EI检索论文近30篇,参编著作10余部。获得授权发明专利6项,省部级科技成果奖3项。主要从事太阳能光伏光热综合利用、建筑节能技术和土壤源热泵技术方面的研究工作。
章节目录
目录(请另附页)AbstractVListofFigures.VIIIListofTables.XINomenclature.XII1.Introduction.11.1.Background.11.2.DescriptionofthenovelPVTheatpumpsystem..31.3.Worksinvolvedintheproject6References.72.ReviewofPVTtechnology.82.1.CommercialPVmaterials.82.2.PVTCollectors.92.2.1.Air-typePVTcollectors.92.2.2.Water-typePVTcollector132.2.3.Dual-typePVTcollector182.3.BIPVT.222.3.1.Air-typeBIPVT.222.3.2.Water-typeBIPVT.232.4.ConcentratingPVTcollectors.252.5.PVTheat
pumpsystem..282.6.Summary.30References.313.NumericalsimulationonenergyperformanceofGVTandFPPVTheatpumpsystems363.1.PVTpanelconfigurations.363.2.NumericalmodelsforGVTPVTheatpumpsystem..373.2.1.Glassvacuumtube(external)383.2.2.Glassvacuumtube(internal)403.2.3.PVmodule.413.2.4.Aluminiumsheet433.2.5.Coppertube.453.2.6.Refrigerant463.2.7.Compressor463.2.8.Expansionvalve.473.2.9.Water-cooledcondenser483.3.NumericalmodelsforFPPVTheatpumpsystem..
483.3.1Glasscover483.3.2.PVmodule.503.3.3.Aluminiumsheet513.3.4.Coppertube.523.3.5.Refrigerant523.4.PerformancecomparisonbetweenGVTandFPPVTheatpumpsystems.523.4.1.Variationofthermalefficiencywithsolarradiation.523.4.2.Variationofelectricalefficiencywithsolarradiation.533.4.3.Variationofpoweroutputwithsolarradiation.543.4.4.VariationofCOPwithsolarradiation.553.4.5.Variationofcondensercapacitywithsolarradiation.553.5.PerformancecomparisonofGVTPVT
heatpumpsystemindifferentcities.563.5.1.Climaticdata.563.5.2.Resultsandanalysis.583.6.Summary.60References.614.ExperimentalstudyonGVTPVTheatpumpsystem..634.1.TestingontheperformanceofPVmoduleswithoutcooling.634.1.1.Testrig.634.1.2.Testingresults.654.2.TestingontheperformanceofGVTPVTheatpumpsystem..664.2.1.Testingrig.664.2.2.Measuringequipments.724.2.3.Performanceassessmentandexperimentimplementation.754.2.4.Testingresults.774.2.5.Comparison
betweenthetestingandsimulationresults.844.3.Summary.865.ExperimentalstudyonFPPVTheatpumpsystemusingPVtiles.875.1.Testingrig.875.2.Resultsanddiscussions.885.3.Summary.946.OperationstrategyandeconomicanalysisofPVTheatpumpsystem..966.1.Operationstrategy.966.1.1.PVelectricitymanagement966.1.2.Heatenergymanagement996.2.Economicanalysis.1006.2.1.Basicinformationandassumptions.1006.2.2.Energyandrunningcostsavingscalculation.1016.2.3.Investmentandpay-back
timecalculation.1026.3.Environmentalanalysis.1026.4.Summary.103References.1037.Conclusionsandfurtherwork.1057.1.Conclusions.1057.1.1.NumericalsimulationonenergyperformanceoftheGVTandFPPVTheatpumpsystems1057.1.2.ExperimentalstudyontheGVTPVTheatpumpsystem..1057.1.3.ExperimentalstudyontheFPPVTheatpumpsystem..1067.1.4.OperationstrategyandeconomicanalysisoftheGVTPVTheatpumpsystem..1077.2.Furtherwork.108'
